[image:]

Data Engineering Guide

Auto Loader Patterns and Best Practices

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Engineering Team

1. Executive Summary
Auto Loader is Databricks' recommended solution for incrementally ingesting files from cloud storage. It automatically tracks which files have been processed, handles schema evolution, and scales to process billions of files. This guide covers patterns, configurations, and best practices for production Auto Loader deployments.
Why Auto Loader?
Traditional file-based ingestion approaches have significant limitations:
	Challenge
	Traditional Approach
	Auto Loader Solution

	File tracking
	Manual tracking tables
	Automatic checkpoint-based tracking

	Schema changes
	Pipeline failures
	Automatic schema evolution

	Scale
	Performance degrades
	Cloud-native file discovery

	Late files
	Complex logic
	Automatic late file detection

	Exactly-once
	Difficult to achieve
	Built-in guarantees

Key Capabilities
Incremental Processing: Only process new files, never reprocess
Schema Evolution: Automatically adapt to schema changes
Cloud-Native: Uses S3/ADLS/GCS notifications for efficient discovery
Exactly-Once: Checkpoint-based guarantees
Rescued Data: Captures malformed records without failing
2. Auto Loader Architecture
2.1 File Discovery Modes
Auto Loader supports two modes for discovering new files:
┌───┐
│ AUTO LOADER FILE DISCOVERY MODES │
├───┤
│ │
│ DIRECTORY LISTING MODE (Default) │
│ ┌───┐ │
│ │ │ │
│ │ Cloud Storage Databricks │ │
│ │ ┌──────────────┐ ┌───────────────┐ │ │
│ │ │ /landing/ │ ──LIST API───▶ │ Auto Loader │ │ │
│ │ │ ├── file1 │ │ ┌─────────┐ │ │ │
│ │ │ ├── file2 │ │ │Checkpoint│ │ │ │
│ │ │ └── file3 │ │ │(tracked) │ │ │ │
│ │ └──────────────┘ │ └─────────┘ │ │ │
│ │ └───────────────┘ │ │
│ │ • Simple setup, no infrastructure │ │
│ │ • Good for < 1M files │ │
│ │ • Higher latency for discovery │ │
│ └───┘ │
│ │
│ NOTIFICATION MODE (Recommended for Scale) │
│ ┌───┐ │
│ │ │ │
│ │ Cloud Storage Cloud Events Databricks │ │
│ │ ┌──────────────┐ ┌────────────┐ ┌───────────────┐ │ │
│ │ │ New file │───▶│ S3 Events │─────▶│ Auto Loader │ │ │
│ │ │ uploaded │ │ EventGrid │ │ (instant │ │ │
│ │ │ │ │ Pub/Sub │ │ detection) │ │ │
│ │ └──────────────┘ └────────────┘ └───────────────┘ │ │
│ │ │ │
│ │ • Near real-time file detection │ │
│ │ • Scales to billions of files │ │
│ │ • Requires cloud infrastructure setup │ │
│ └───┘ │
│ │
└───┘
2.2 Checkpoint Structure
/checkpoints/auto_loader_stream/
├── _delta_log/ # Internal Delta log
│ ├── 00000000000000000000.json
│ └── ...
├── sources/
│ └── 0/
│ ├── rocksdb/ # File tracking state
│ └── ...
└── metadata # Stream metadata
3. Basic Configuration Patterns
3.1 JSON Ingestion
Basic JSON ingestion with Auto Loader
json_stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")

 # Schema management
 .option("cloudFiles.schemaLocation", "/checkpoints/json_schema")
 .option("cloudFiles.inferColumnTypes", "true")

 # Load from landing zone
 .load("/mnt/landing/events/")
)

Write to bronze table
query = (json_stream
 .withColumn("_ingestion_time", F.current_timestamp())
 .withColumn("_source_file", F.input_file_name())
 .writeStream
 .format("delta")
 .option("checkpointLocation", "/checkpoints/bronze_events")
 .trigger(availableNow=True)
 .toTable("bronze.events")
)
3.2 CSV Ingestion
CSV with explicit schema and options
csv_stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "csv")
 .option("cloudFiles.schemaLocation", "/checkpoints/csv_schema")

 # CSV-specific options
 .option("header", "true")
 .option("delimiter", ",")
 .option("quote", '"')
 .option("escape", "\\")
 .option("multiLine", "true")
 .option("dateFormat", "yyyy-MM-dd")
 .option("timestampFormat", "yyyy-MM-dd HH:mm:ss")

 # Error handling
 .option("cloudFiles.rescuedDataColumn", "_rescued_data")
 .option("mode", "PERMISSIVE") # Don't fail on bad records

 .load("/mnt/landing/csv_data/")
)
3.3 Parquet Ingestion
Parquet ingestion (schema from files)
parquet_stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "parquet")
 .option("cloudFiles.schemaLocation", "/checkpoints/parquet_schema")

 # Parquet-specific options
 .option("mergeSchema", "true") # Handle schema evolution

 # Performance
 .option("cloudFiles.maxFilesPerTrigger", "1000")

 .load("/mnt/landing/parquet_data/")
)
3.4 Avro Ingestion
Avro with schema registry
avro_stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "avro")
 .option("cloudFiles.schemaLocation", "/checkpoints/avro_schema")

 # Avro-specific
 .option("avroSchema", avro_schema_string) # Optional explicit schema

 .load("/mnt/landing/avro_data/")
)
4. Schema Evolution Patterns
4.1 Schema Evolution Modes
Auto Loader provides flexible schema evolution handling:
Mode 1: Add new columns automatically
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaEvolutionMode", "addNewColumns")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")
 .load(path)
)

Mode 2: Rescue unmatched data
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaEvolutionMode", "rescue")
 .option("cloudFiles.rescuedDataColumn", "_rescued_data")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")
 .load(path)
)

Mode 3: Fail on new columns (strict mode)
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaEvolutionMode", "failOnNewColumns")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")
 .load(path)
)

Mode 4: Ignore new columns
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaEvolutionMode", "none")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")
 .load(path)
)
4.2 Schema Hints
Provide hints for better type inference:
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")

 # Schema hints for specific columns
 .option("cloudFiles.schemaHints", """
 id BIGINT,
 amount DECIMAL(18,2),
 created_at TIMESTAMP,
 metadata MAP<STRING, STRING>,
 tags ARRAY<STRING>
 """)

 .load(path)
)
4.3 Handling Schema Changes in Production
def handle_schema_evolution(batch_df, batch_id):
 """Process batch with schema evolution handling."""

 # Check for rescued data (schema mismatches)
 if "_rescued_data" in batch_df.columns:
 rescued_count = batch_df.filter(F.col("_rescued_data").isNotNull()).count()
 if rescued_count > 0:
 # Log schema evolution event
 print(f"Batch {batch_id}: {rescued_count} records with schema issues")

 # Write rescued data for analysis
 (batch_df
 .filter(F.col("_rescued_data").isNotNull())
 .write.format("delta").mode("append")
 .saveAsTable("quarantine.schema_evolution_records")
)

 # Write valid records
 (batch_df
 .filter(F.col("_rescued_data").isNull())
 .drop("_rescued_data")
 .write.format("delta").mode("append")
 .option("mergeSchema", "true") # Allow schema evolution in Delta
 .saveAsTable("bronze.events")
)

query = (stream.writeStream
 .foreachBatch(handle_schema_evolution)
 .option("checkpointLocation", "/checkpoints/schema_handling")
 .start()
)
5. Performance Optimization
5.1 Rate Limiting
Control ingestion rate to prevent overwhelming downstream systems:
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")

 # Rate limiting options
 .option("cloudFiles.maxFilesPerTrigger", "1000") # Max files per batch
 .option("cloudFiles.maxBytesPerTrigger", "10g") # Max bytes per batch

 .load(path)
)
5.2 Notification Mode for Scale
Enable cloud notifications for large-scale ingestion:
AWS S3 with notifications
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")

 # Enable notifications (S3 → SQS)
 .option("cloudFiles.useNotifications", "true")
 .option("cloudFiles.queueUrl", "https://sqs.region.amazonaws.com/account/queue-name")

 # AWS credentials (if not using instance profile)
 # .option("cloudFiles.awsAccessKey", access_key)
 # .option("cloudFiles.awsSecretKey", secret_key)

 .load("s3://bucket/landing/")
)

Azure ADLS with Event Grid
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")

 # Enable notifications (ADLS → Event Grid → Queue)
 .option("cloudFiles.useNotifications", "true")
 .option("cloudFiles.resourceGroup", "my-resource-group")
 .option("cloudFiles.subscriptionId", "subscription-id")

 .load("abfss://container@storage.dfs.core.windows.net/landing/")
)
5.3 Partition Discovery
Optimize for partitioned data:
Partitioned landing zone: /landing/date=2025-01-29/hour=10/
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "parquet")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")

 # Enable partition inference
 .option("cloudFiles.partitionColumns", "date,hour")

 # Only process recent partitions
 .option("pathGlobFilter", "date=2025-01-*/hour=*/*.parquet")

 .load("/mnt/landing/events/")
)
5.4 Parallelism Tuning
Increase parallelism for large files
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")

 # Parallelism options
 .option("cloudFiles.maxBytesPerTrigger", "50g")

 .load(path)
)

Write with optimized partitioning
query = (stream
 .repartition(100) # Parallel processing
 .writeStream
 .format("delta")
 .option("checkpointLocation", "/checkpoints/output")
 .trigger(processingTime="30 seconds")
 .toTable("bronze.events")
)
6. Error Handling Patterns
6.1 Rescued Data Column
Enable rescued data for malformed records
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")
 .option("cloudFiles.rescuedDataColumn", "_rescued_data")
 .load(path)
)

Process with rescue handling
def process_with_rescue(batch_df, batch_id):
 # Separate good and rescued records
 good_records = batch_df.filter(F.col("_rescued_data").isNull())
 rescued_records = batch_df.filter(F.col("_rescued_data").isNotNull())

 # Write good records
 good_records.drop("_rescued_data").write.format("delta").mode("append") \
 .saveAsTable("bronze.events")

 # Write rescued records to quarantine
 if rescued_records.count() > 0:
 rescued_records.write.format("delta").mode("append") \
 .saveAsTable("quarantine.malformed_events")
6.2 Corrupt File Handling
Handle corrupt files gracefully
stream = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")

 # Ignore corrupt files instead of failing
 .option("ignoreCorruptFiles", "true")

 # Or: Move corrupt files to quarantine
 .option("cloudFiles.badRecordsPath", "/mnt/quarantine/corrupt_files/")

 .load(path)
)
6.3 File Validation
def validate_and_process(batch_df, batch_id):
 """Validate files before processing."""

 # Add file metadata
 batch_with_meta = (batch_df
 .withColumn("_source_file", F.input_file_name())
 .withColumn("_file_size", F.lit(0)) # Would need UDF for actual size
 .withColumn("_ingestion_time", F.current_timestamp())
)

 # Validate record count
 record_count = batch_with_meta.count()
 if record_count == 0:
 print(f"Batch {batch_id}: Empty batch, skipping")
 return

 # Validate required fields
 invalid = batch_with_meta.filter(
 F.col("event_id").isNull() |
 F.col("timestamp").isNull()
)

 if invalid.count() > batch_with_meta.count() * 0.1: # >10% invalid
 raise ValueError(f"Batch {batch_id}: Too many invalid records")

 # Write valid records
 batch_with_meta.filter(F.col("event_id").isNotNull()).write \
 .format("delta").mode("append").saveAsTable("bronze.events")

query = (stream.writeStream
 .foreachBatch(validate_and_process)
 .option("checkpointLocation", "/checkpoints/validated")
 .start()
)
7. Operational Patterns
7.1 Incremental Batch Processing
Use availableNow trigger for scheduled batch jobs:
Process all available files then stop
query = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")
 .load("/mnt/landing/events/")
 .writeStream
 .format("delta")
 .option("checkpointLocation", "/checkpoints/incremental")
 .trigger(availableNow=True) # Process all then stop
 .toTable("bronze.events")
)

Wait for completion
query.awaitTermination()
print(f"Processed {query.lastProgress['numInputRows']} rows")
7.2 Backfill Pattern
Process historical data with separate checkpoint:
Backfill historical data
backfill_query = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/checkpoints/backfill_schema")

 # Process specific path for backfill
 .load("/mnt/landing/historical/2024/")

 .writeStream
 .format("delta")
 .option("checkpointLocation", "/checkpoints/backfill") # Separate checkpoint
 .trigger(availableNow=True)
 .toTable("bronze.events")
)

backfill_query.awaitTermination()
7.3 Multi-Path Ingestion
Ingest from multiple paths with single stream:
Multiple source paths
paths = [
 "/mnt/landing/source_a/",
 "/mnt/landing/source_b/",
 "/mnt/landing/source_c/"
]

Create union of streams
streams = [
 spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", f"/checkpoints/schema_{i}")
 .load(path)
 .withColumn("_source_path", F.lit(path))
 for i, path in enumerate(paths)
]

Union all streams
combined = streams[0]
for stream in streams[1:]:
 combined = combined.union(stream)

Write combined stream
query = (combined.writeStream
 .format("delta")
 .option("checkpointLocation", "/checkpoints/combined")
 .toTable("bronze.all_events")
)
8. Monitoring and Troubleshooting
8.1 Monitoring Queries
-- Files processed per batch
SELECT
 batch_id,
 num_input_rows,
 sources[0].num_input_files as files_processed,
 sources[0].input_rows_per_second as rows_per_second
FROM system.streaming.query_progress
WHERE sources[0].description LIKE '%cloudFiles%'
ORDER BY timestamp DESC
LIMIT 20;
8.2 Troubleshooting Common Issues
	Issue
	Symptom
	Solution

	Slow file discovery
	High latency
	Enable notifications mode

	Schema inference errors
	Unexpected types
	Use schema hints

	Memory errors
	OOM during batch
	Reduce maxFilesPerTrigger

	Duplicate processing
	Files processed twice
	Check checkpoint location

	Missing files
	Files not processed
	Check path and glob patterns

8.3 Checkpoint Management
View checkpoint state
checkpoint_path = "/checkpoints/my_stream"

List checkpoint contents
files = dbutils.fs.ls(checkpoint_path)
for f in files:
 print(f"{f.name}: {f.size} bytes")

Reset checkpoint (reprocess all files)
WARNING: This will reprocess all files!
dbutils.fs.rm(checkpoint_path, recurse=True)
9. Best Practices Summary
9.1 Configuration Checklist
	Setting
	Recommendation

	Schema location
	Dedicated path, separate from checkpoint

	Schema evolution
	Use "addNewColumns" or "rescue" mode

	Rescued data
	Always enable for production

	Rate limiting
	Set based on cluster capacity

	Notifications
	Enable for >1M files

9.2 Production Recommendations
Always use schema location: Prevents schema inference on every restart
Enable rescued data column: Captures malformed records without failing
Set rate limits: Prevent overwhelming downstream systems
Use notifications for scale: Essential for large file volumes
Monitor file lag: Track files waiting to be processed
Test schema evolution: Validate behavior before production
Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Data Engineering Team

image1.png
#MAST=CH
DIGITAL

